4.1.11 ความแข็งแกร่งต่อการล้าตัว
การล้าตัวของวัสดุเกิดจากการที่มีแรงกระทำซ้ำ ๆ กลับไปกลับมา จนวัสดุเกิดความอ่อนล้าในเนื้อวัสดุ เมื่อยังมีแรงมากระทำอีกต่อไปที่วัสดุนั้นก็อาจจะแตกหักเสียหายได้
ความล้าตัวที่เกิดขึ้นในชิ้นส่วนเครื่องกล ยกตัวอย่างเช่น เครื่องยนต์ทำงานอยู่ตลอดเวลา, การทำงานของสวิตซ์แม่เหล็กไฟฟ้า (รีเลย์ หรือแม็กเนติก), การสั่นสะเทือนของสปริง ฯลฯ ซึ่งตัวอย่างที่กล่าวมาเหล่าจะมีการกระทำซ้ำ ๆ จนเกิดความเค้นสลับกันไป / มา บางครั้งจำนวนทำงานอาจนับเป็นล้านครั้งก่อนที่มันจะล้า และเกิดความเสียหาย
วิดีโอการทดสอบความล้าตัวของวัสดุ
แนะนำเพื่อให้อ่านได้ต่อเนื่องให้ คลิกขวาเลือก Open link in new window
ความทนทานต่อความล้าตัวนี้ การคำนวณยังไม่สามารถคำนวณได้เป็นที่แน่นอน แต่สามารถประมาณค่าได้กว้าง ๆ อีกทั้งพฤติกรรมการล้าตัวก็ยังไม่ค่อยเป็นที่เข้าใจนัก ซึ่งส่วนใหญ่ต้องอาศัยการทดลองในห้องปฏิบัติการ และบันทึกค่าไว้เพื่อหาพฤติกรรมการล้าตัวของวัสดุแต่ละชนิด, แต่ละรูปร่าง, แต่ละสภาพแวดล้อม หรืออื่น ๆ
รูปหน้าตัดเพลาเสียหายอันเนื่องมาจากความล้า
จากการศึกษาเรียนรู้จะพบว่า พฤติกรรมความล้าตัวจะเกิดจาก 2 ระยะก็คือ
Ø จะเริ่มเกิดรอยแตกร้าวขึ้นในระยะเริ่มแรก และ
Ø ต่อมาเมื่อมีรอยแตกแล้ว และยังคงเกิดความเค้นกระทำซ้ำไปซ้ำมาเรื่อย ๆ ณ บริเวณนั้นอีก รอยแตกร้าวก็จะเกิดการลุกลาม จนวัสดุนั้นไม่สามารถรับความเค้นได้อีก วัสดุนั้นก็จะเริ่มพังทลายเสียหายลงไป
วิดีโอแสดงการทดลองการล้าตัวจากการหมุนของเพลา
การทดสอบการล้าตัว เราคิดเป็นจำนวนรอบการหมุนที่ทำซ้ำ ๆ ปกติจะคิดที่ค่ารอบการหมุนที่ 1,000,000 รอบขึ้นไป จึงเป็นการทดสอบแบบระยะยาว อาจะเป็นวัน, เดือน หรือเป็นปีก็ได้ ในการทดลองจะมีค่าความเค้นทำให้วัสดุเริ่มเกิดความเสียหาย แต่วัสดุยังสามารถทนทานได้อยู่ จนถึงค่าความเค้นอยู่ค่าหนึ่ง ช่วงความเค้นนั้นก็คือ ขีดจำกัดความทนทาน (Endurance limit) ในการใช้งานของชิ้นส่วนเครื่องกล จึงไม่ควรให้ความเค้นถึงค่านี้ เพราะจะทำให้วัสดุเริ่มแตกร้าวแต่ยังไม่พังทันที แต่ถ้าความเค้นสูงกว่าขีดจำกัดความทนทานแล้ว ก็จะพังทลายลง
รูปเพลาข้อเหวี่ยงในเครื่องยนต์ที่เกิดการล้าตัวจนตัวเพลาเกิดพังเสียหาย
อุณหภูมิที่ร้อน และเย็นก็มีผลต่อความทนทานต่อการล้าตัวของวัสดุ ตัวอย่างเช่น ถ้าอุณหภูมิเพิ่มขึ้นความทนทานของวัสดุจะมีค่าลดลง แล้วยังทำให้ช่วงขีดจำกัดความทนทานลดลงอีกด้วย นอกจากอุณหภูมิแล้ว สารเคมี และโครงสร้างทางจุลภาคของวัสดุ ก็มีผลเช่นกัน เช่น เมื่อเราเติมสารเคมีบางตัวลงไปในเนื้อวัสดุจะทำให้วัสดุนั้นมีความแข็งแกร่งต่อการล้าตัวเพิ่มขึ้น
การทดสอบความล้าตัวมีอยู่ด้วยกันหลายวิธี เช่น เครื่องทดสอบความเค้นแนวแกน, เครื่องทดสอบความเค้นดัดงอ, เครื่องทดสอบอเนกประสงค์ (Universal testing machine), การทดสอบความล้าแบบพับงอ (Reversed bending) ดังรูป
รูปเครื่องทดสอบการล้าตัวของวัสดุแบบดิจิตอล
วิดีโอแสดงเครื่องกลทดสอบความล้าตัวแบบพลวัต (Dynamic fatigue testing machine)
แต่ละวิธีจะมีแรงกระทำในแนวแรงลักษณะต่าง ๆ กัน กับชิ้นงานทดสอบจนเกิดรอยแตกร้าว และเกิดความเค้นขึ้น แล้วทำการบันทึกจำนวนรอบที่วัสดุชิ้นงานทนได้ ก่อนที่จะพังทลาย แล้วก็นำค่าที่ทดสอบนั้นมาทำเป็นกราฟ ที่เรียกกว่า กราฟทดสอบความล้า (S-N Curve)
รูปสปริงขาดอันเนื่องจากการล้าตัว
วิดีโอแสดงการทดสอบการล้าตัวของสปริง
ค่าขีดจำกัดความทนทาน จะมีความสัมพันธ์กับค่าความแข็งแกร่งสูงสุด นั่นก็คือ ในการออกแบบชิ้นส่วนต่าง ๆ ที่จะก่อให้เกิดความล้า จะออกแบบให้ใช้ค่าขีดจำกัดความทนทานจะไม่เกินครึ่งหนึ่งของค่าความแข็งแกร่งสูงสุด วัสดุแต่ละชนิดค่าขีดจำกัดความทนทานจะไม่เท่ากัน จึงต้องมีการออกแบบเป็นรายกรณีไป
4.1.12 ความแข็งแกร่งต่อการกระแทก
ในการออกแบบเลือกใช้วัสดุ วิศวกรมีความจำเป็นที่จะต้องรู้ถึงคุณสมบัติ ความเหนียว (Toughnes: คือ ความสามารถของวัสดุในการดูดซับพลังงานไว้ได้โดยไม่เกิดการพังเสียหาย) ในตัววัสดุด้วย เพื่อใช้ประเมินความเสียหายที่อาจจะเกิดขึ้น และเพื่อความปลอดภัย เมื่อนำชิ้นงานนั้นมาใช้งานในสภาพการณ์ต่าง ๆ ยกตัวอย่างเช่น ในห้องเผาไหม้ในเครื่องยนต์ลูกสูบจะต้องรับแรงกระแทกอันเกิดจากการระเบิดภายในห้องเผาไหม้, เครื่องไฮดรอลิกส์อัดกระแทกที่ต้องกระแทกกับชิ้นงานเพื่อการอัดงาน หรือทำลาย, เครื่องบดหินในเหมืองแร่ เพื่อใช้ในการบดแร่ให้เป็นเศษเล็ก ๆ ฯลฯ
การทดสอบกระแทก (Impact testing) เป็นการทดสอบวัสดุด้วยการกระแทกที่ชิ้นวัสดุด้วย ตุ้มเหวี่ยง (Pendulum) เป็นการศึกษาความสามารถในการรับแรงกระแทก (Dynamic load) ของวัสดุ ที่ทำแบบนี้ก็เพื่อดูความสามารถของวัสดุ ว่าเมื่อวัสดุอยู่ภายใต้แรงกระทำที่รุนแรง หรือการกระแทก วัสดุทดสอบจะทนทานได้มากน้อยเพียงใด วิธีการก็โดยใช้ตุ้มเหวี่ยงที่มีน้ำหนักอยู่ค่าหนึ่ง ประกอบกับเครื่องทดสอบ แล้วยกตัวตุ้มเหวี่ยงให้สูงถึงจุดหนึ่ง แล้วปล่อยลงมากระแทกกับชิ้นทดสอบ เพื่อตรวจวัดพลังงานที่ตุ้มเหวี่ยงปล่อยออกมา เพื่อให้วัสดุทดสอบดูดซับพลังงานของตุ้มเหวี่ยง จนทำให้ชิ้นทดสอบเกิดความเสียหาย จากการกระแทกเพียงครั้งเดียว โดยวัสดุที่มีความเหนียวมากจะใช้พลังงานที่สูงกว่าวัสดุที่มีความเหนียวน้อยกว่าในการกระแทกชิ้นงาน แล้วอุณหภูมิจะมีผลต่อความเหนียวของวัสดุอย่างมาก
ความทนทานต่อการกระแทกเป็นคุณสมบัติหนึ่งของวัสดุที่ยากต่อการคำนวณหาค่า จึงต้องใช้การทดลองเป็นสำคัญในการหาความทนทาน ส่วนประโยชน์จากการทดสอบนี้ที่สำคัญ ก็คือให้ความน่าเชื่อถือต่อชิ้นงานที่ผลิตออกมาว่าเมื่อโดนแรงกระทำขนาดนี้จะไม่พัง และให้ความปลอดภัยต่อการนำไปใช้งาน
รูปชิ้นงานทดสอบก่อนทำการกระแทก
รูปตัวอย่างชิ้นงานหลังการทดสอบ
พลังงานของการกระแทกจะขึ้นอยู่กับมวลของตุ้มเหวี่ยง และระดับความสูงที่ตุ้มเหวี่ยงยกตัว จุดที่กระแทกชิ้นงานจะเป็นจุดต่ำสุดในการเหวี่ยงกระแทก โดยความเร็วของตุ้มเหวี่ยงก่อนที่จะถึงชิ้นทดสอบจะมีความเร็วสูงสุดและมีโมเมนตัมสูง เมื่อตุ้มเหวี่ยงกระทบกับชิ้นงานทดสอบแล้ว ตุ้มเหวี่ยงจะสูญเสียพลังงานไปส่วนหนึ่งเพื่อให้ชิ้นทดสอบนั้นหักพัง ค่าพลังงานที่สูญเสียไปนี้ก็คือ พลังงานการกระแทก (Impact energy) มีหน่วยเป็นฟุต-ปอนด์ (ft-lb) หรือ จูล (Joule: J) ในการทดสอบด้วยการกระแทก นิยมนำมาใช้อยู่ 2 วิธี นั่นก็คือ การทดสอบกระแทกแบบชาร์ปี (Charpy impact testing) และการทดสอบการกระแทกแบบไอซอด (Izod impact testing)
รูปชิ้นงานตัวอย่างที่ผ่านการกระแทก
วิดีโอแสดงการทดสอบความแข็งแกร่งต่อการกระแทกด้วยการวิธีการชาร์ปี
การทดสอบแบบชาร์ปีเป็นเครื่องทดสอบที่สามารถวัดพลังงานจากการกระแทกได้จาก 1.356 J (1 ft.lb) ถึง 406.8 J (300 ft.lbs) สามารถทดสอบที่ช่วงอุณหภูมิจาก -195.5°C (-320°F) ถึง 1093°C (2,000 °F) ชิ้นงานทดสอบจะถูกทำมีลักษณะตรงกลางชิ้นงานเป็นรอยบากได้แก่ รอยบากตัววี (V-notch), รอยบากตัวยู (U-notch), รอยบากรูปรูกุญแจ (Key-hole notch) รวมถึงชิ้นทดสอบที่ไม่มีรอยบาก
การวางชิ้นงานในการทดสอบแบบไอซอด
วิดีโอการทดสอบกระแทกแบบไอซอดโดยเครื่องกลสมัยใหม่
การทดสอบแบบไอซอด จะคล้ายกับแบบชาร์ปี และให้พลังงานกระแทกทำได้สูงสุด 325.44 J (240 ft.lbs) มาตรฐานของชิ้นงานทดสอบเป็นรอยบากตรงกลางเช่นเดียวกับแบบชาร์ปี
การทดสอบทั้งสองแบบจะมีลักษณะคล้ายกัน แตกต่างกันตรงที่ การวางชิ้นงาน โดยการทดสอบแบบชาร์ปีจะวางชิ้นทดสอบในแนวนอน และให้ตุ้มเหวี่ยงตกกระแทกตรงกลางที่เป็นด้านตรงข้ามรอยบาก ส่วน การทดสอบแบบไอซอด จะวางชิ้นงานทดสอบแบบแนวตั้ง และให้ตุ้มเหวี่ยงไปกระแทกด้านที่มีรอยบาก
วิดีโอจำลองการทดสอบการกระแทกแบบชาร์ปี
ข้อคิดดี ๆ ที่นำมาฝาก
จงพอใจเท่าที่มี และจงยินดีเท่าที่ได้
บทความนี้เกิดจากการเขียนและส่งขึ้นมาสู่ระบบแบบอัตโนมัติ สมาคมฯไม่รับผิดชอบต่อบทความหรือข้อความใดๆ ทั้งสิ้น เพราะไม่สามารถระบุได้ว่าเป็นความจริงหรือไม่ ผู้อ่านจึงควรใช้วิจารณญาณในการกลั่นกรอง และหากท่านพบเห็นข้อความใดที่ขัดต่อกฎหมายและศีลธรรม หรือทำให้เกิดความเสียหาย หรือละเมิดสิทธิใดๆ กรุณาแจ้งมาที่ ht.ro.apt@ecivres-bew เพื่อทีมงานจะได้ดำเนินการลบออกจากระบบในทันที